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Abstract—The demand for high-bandwidth, low-latency ser-
vices is rapidly increasing. Content Distribution Networks (CDNs)
have addressed this by providing content from within or close
to the Internet Service Provider (ISP). Still, the most common
bottleneck for high service quality is the ’last mile’ between ISP
and end user. Serving content from small caches on end-user de-
vices promises to increase service quality of the respective content.
Similarly, fog computing promises to provide low-latency services
from arbitrary nodes within the network. Both require additional
functionality provided by network functions virtualization (NFV),
redirecting traffic to the appropriate destinations. Still, the cost
and performance of possible solutions are not well analyzed.
Hence, this paper analyzes the forwarding and computing perfor-
mance of a number of single-board computers (SBCs) from which
models for the performance and energy cost of different loads
are derived. Furthermore, the development of energy efficiency
gains over the last years is analyzed, confirming Koomey’s law
also for SBCs, leading to an increase of computational efficiency
by a factor of 5.5 to 7.5 over the course of four years, which
relates to a doubling time of 1.62 years.

I. INTRODUCTION

The demand for mobile data has increased exponentially and
is predicted to further rise over the next years [1]. The majority
of this traffic is caused by mobile video consumption [1]. CDNs
provide the requested content from within or close to the end-
user’s ISP. Still, all traffic needs to be handled by cellular and
WiFi networks in real-time, being the bottleneck between the
end user and the ISP’s network [2]. Considering the exponential
increase in bandwidth demand, and the comparatively slow
upgrade of networks, providing content and advanced network
services requiring high bandwidth, low latency, or both from
within the end-user promises becomes increasingly attractive,
thus reducing the load on these bottleneck links.

Conventional approaches propose using resource rich servers
at public locations [3], usually called cloudlets. Still, consid-
ering the number of clients, in particular at smaller public or
private hotspots, smaller and more energy efficient machines are
recommended. These nodes are expected to improve the quality
of service (QoS) by e.g. re-routing traffic through a performance
enhancing proxy (PEP) [2], thus increasing responsiveness
of the network and improving perceived network quality, or
serving locally cached content, for which also de-centralized
traffic redirection is required. Also, the Internet of Things (IoT)
is a prominent candidate for locating computing and storage
resources at end-user premises. Large quantities of data and

short update intervals suggest aggregating the collected data
before sending them via public networks [4].

Currently available hardware at end-user premises is strictly
limited in computation and storage capabilities. Extending these
by attaching SBCs greatly enhances their capabilities for a
reasonable price. Thus it becomes possible to provide virtual
network functions (VNFs), serve cached content, or run other
de-centralized computing and data aggregation tasks on fog
nodes from within the end-users’ premises. Still, the power
consumption of these approaches, in particular under different
loads, is not thoroughly evaluated yet.

Consequently, this publication addresses the need for fine-
granular power models for decentralized network service
delivery by measuring and modeling the power consumption
of SBCs. The analysis is guided by the following questions:

• How can the power consumption of SBCs running VNFs
and caches be modeled?

• How has the energy efficiency of SBCs changed since the
release of the Raspberry Pi?

• How accurate can the energy cost of a deployed network
service be derived using readily available system metrics?

Special emphasis is placed on generating versatile, but accurate
power models. Thus, this paper builds the foundation for
further analysis and optimization of the energy consumption of
various distributed networking, caching, and data processing ap-
proaches. Using the presented models, the power consumption
of a system can be derived in high accuracy based on readily
available system monitoring values only. The practicality of this
approach is shown by deriving the power consumption of the
RB-HORST system [5] and HTTP streaming as described
in Section VI. Furthermore, by analyzing the progress of
computational efficiency and energy cost since the release of
the Raspberry Pi, an 6-fold increase in energy efficiency over
the course of four years is determined, confirming Koomey’s
law also in the area of ARM-based single board computers.

This paper is structured as follows. Section II discussed re-
lated work. Section III describes the Devices under Test (DUTs)
and the measurement setup. The measurements executed are
described in Section IV. The model generation and resulting
models are described in Section V. Section VI compares the
generated models. Finally, Section VII summarizes the results
and concludes the paper.
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II. RELATED WORK

A power model of the Raspberry Pi was presented in [6].
As the Raspberry Pi established the age of low-power ARM
computing, this area has seen enormous development over
the last years. This trend is supported by the increasing
computational capabilities of recent smartphones. Current SBCs
often use systems on chip (SOCs) developed for smartphones.
This is apparent in the graphical abilities of the platforms,
which may not be required for embedded projects.

Malik et al. [7] compare the energy efficiency of an
Intel Xeon processor with an Intel Atom processor. The
workload consists of different standard big-data, scale-out,
and traditional benchmarks. The power consumption of the
Intel Atom processor is always lower, but also execution times
increase. Still, the energy delay product for all except very
large workloads favors the Intel Atom server. Blem et al. [8]
analyze the difference in computational efficiency and power
consumption between x86 and ARM based instruction set
architectures (ISAs). Their analysis is based on a number of
benchmarks, from which their execution time and resulting
power consumption are derived. The authors conclude that
the ISA does not have an influence on the task execution
nor energy consumption. Using ARM platforms for high
performance computing becomes increasingly popular. Jarus
et al. [9] compare the performance and energy efficiency of
different high-performance high-density computing platforms.
They conclude that the performance per Watt was highest for
the ARM Cortex A9, and execution time was lowest compared
to the Intel Atom N2600 and the AMD Fusion G-T40N.
Lorenzon et al. [10] detail the differences in energy efficiency
of SBCs for different idle consumption and numbers of cores.
Maqbool et al. [11] analyze the feasibility of using ARM
based systems for scientific workloads, while also considering
energy efficiency. They conclude that although computational
performance is lower, the energy efficiency per calculation
is between 2.6 to 4 times higher for ARM based systems.
Similar results are confirmed by Zhao et al. [12] for data-
center workloads. Contrary to these studies, the focus of this
publication is a general purpose power model of SBCs with
the goal of estimating the current power consumption based
on system monitoring values. Furthermore, the influence of
network activity on the power consumption is analyzed, which
was not part of the presented studies.

Fajardo et al. [13] propose to augment the mobile edge
with storage and computation facilities to form a distributed
cloud serving special services with low latency. Their approach
proposes to use energy efficient ARM architectures, which are
to be extended using special purpose acceleration hardware.
The approach also mentions energy efficiency, but lacks a
detailed analysis. Here, the proposed models may be used to
derive cost metrics. Thus it becomes also possible to assess
the benefit over cloud services.

Meurisch et al. [14] analyze the energy efficiency of
offloading computationally intensive tasks from the smartphone
to the cloud or de-centralized cloudlets, being located at traffic

and user-intensive locations. As cloudlet two different hardware
platforms were used. One is a conventional PC, the other
a high-end WiFi AP/router. Major focus of the evaluation
was the energy consumption of the smartphone, which also
depends on network bandwidth to the cloud/cloudlet and the
respective processing time. Using low-power ARM platforms,
which may be integrated into future Access Points (APs), may
simultaneously improve performance and reduce latency, while
at the same time reducing the system power consumption.
Using the power models proposed here, the cost of different
workloads (including network transfer) can be calculated.

A similar approach is presented by Lareida et al. [5],
using SBCs as intelligent caches. Their functionality extends
traditional caching functionality by using information from
social platforms to derive interest in particular content, which
is then pre-loaded to the local device. By making content
available locally, the quality of experience (QoE) of the end user
is increased due to lower latency and higher local bandwidths.
Further, the approach considers global popularity to determine
content to be made available locally. The power model derived
here is applied to their experimental data to derive the power
consumption of the full system under operating conditions.

Another example of the application of Raspberry Pis is the
Glasgow Raspberry Pi Cloud [15]. Tso et al. built a scale model
of a cloud computing infrastructure for research and educational
purposes. It emulates all functionality commonly found in
large, commercial data centers (DCs), including clustering of
machines and networking. Compared to conventional cloud-
computing environments, this project allows conducting cloud
experiments on a small, restricted environment. The authors
evaluate the power consumption roughly, but don’t describe a
full power model. Using the power models derived within this
paper, the scheduling algorithms for the cloud DC may also
include the energy cost in their scheduling decisions. Applying
the principles learned there, the optimization of full-grown
cloud environments may be possible.

SBCs may also be used in the IoT. Currently, each device
connects independently to its respective cloud service, sending
measurements and system state for aggregation and receiving
control commands. Papageorgiou et al. [4] have identified the
potential of aggregating data within the customers’ premises to
reduce the load on the network and the cloud environment. This
is possible, as usually data sensed by the devices is redundant
(e.g. multiple temperature/light sensors, high sampling interval).
Their approach may benefit from deriving the energy cost and
savings from edge-processing compared to cloud processing
using the power models presented here.

III. MEASUREMENT SETUP

The measurement setup extends the one described in [6].
An schematic of the power measurements is given in Figure 1.
Contrary to the previous study [6], the goal of this publication
is analyzing the evolution of the energy efficiency of SBCs over
the last years. Therefore, a number of different platforms were
selected. In the following, the DUTs, measurement environment,
test, and the accuracy of the measurements are discussed.
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Fig. 1. Overview of the power and performance measurement setup

A. Description and Comparison of the Devices under Test

While a power model for the Raspberry Pi B is already
published in [6], no power models of other SBCs are known to
the authors. Hence, the analysis is extended using a number of
additional devices (e.g. Raspberry Pi 2, Cubieboard3, Odroid
C1, Raspberry Pi 3, Odroid C2). These platforms were selected
to represent a range of different vendors, and hence approaches
and focus on the purpose and usage of these platforms. The
Raspberry Pi 2 can be seen as the direct successor of the
Raspberry Pi as a general purpose, low-cost, low-performance
platform. Compared to the Pi 1, the processor frequency was
slightly improved (700 MHz to 900 MHz), but instead of a
single core, the Pi 2 features a quad-core processor. Also the
memory was doubled to 1 GB, while keeping the I/Os stable.
The Raspberry Pi 3, released exactly one year later features a
64 bit CPU, but the default OS (which is used here, as it is
most commonly run) is still a 32 bit OS, due to compatibility
reasons. The other major difference compared to the Pi 2 is
the increased processor frequency of 1.2 GHz. The Ethernet
interface of all these devices is Fast Ethernet with a maximum
bandwidth of 100 Mbps.

The focus of the Odroids is clearly more on processing and
I/O performance, making it a suitable media center or casual
gaming machine. The quad-core processor of the C1 with
1.5 GHz per core provides sufficient performance. The Gigabit
Ethernet interface is suitable for streaming high bandwidth
content from a remote server. The Odroid C2 shows similar
system parameters, but instead of the 32 bit CPU, a 64 bit
CPU is used. It is possible to run both an 32 bit and 64 bit
system on these as done for the Raspberry Pi 3, but for the
C2 only a 64 bit OS is available.

The Cubieboard 3, also known as Cubietruck, is more
focused on communication, with built in Bluetooth and WiFi
chip sets. Further, the Cubieboard3 has the largest memory of
the analyzed devices and a SATA port, making a suitable low-
power home-server. With a dual-core processor with 1 GHz,
a reasonable performance can be expected. Using Gigabit

Ethernet or WiFi, the Cubieboard 3 is well connected and may
also serve as local WiFi AP.

An overview of these platforms is given in Table I.

B. Measurement Environment

The measurement setup is an extended version of the setup
described in [6]. The main differences are support for measuring
and controlling the system utilization of multi-core systems,
and the further automation of the tests.

The DUTs were connected to the power supply via a
custom built power measurement board (cf. Fig 1a). The power
consumption is measured using Measurement Computing’s
USB1608-FSPlus1, a 16 bit, simultaneous sampling measure-
ment card. Configuration and test execution are controlled via
Ethernet or WiFi, depending on the test requirements.

Figure 1b details the schematics of the power measurement
board. A precision 0.1 Ω resistor (1 %) is inserted into the 5 V
line, and provides connectors to measure the supply voltage
(U1) and the voltage U2 over the measurement shunt R, which
is proportional to the current I2 consumed by the DUT. The
measurements are recorded with a sampling rate of 10 kS/s.
The data is recorded using a custom software interfacing with
the measurement library provided by Measurement Computing.
Based on the electrical configuration and the resistance of
the measurement shunt, this software calculates the power
consumption of the DUT, averages the measurements over the
course of one second, and writes a CSV-file for later analysis.

The measurement PC is a laptop with a Gigabit network
interface, a quad-core processor, and sufficient memory. Hence,
the influence of this machine on the measurements is expected
to be negligible. This machine is used to control the load
tests, measure and record the power consumption, and act
as remote end-point for network throughput measurements.
Test execution is controlled using SSH from the measurement
PC. Still, as some tests require the absence of any network
connection, the measurement and monitoring scripts were
designed to run in the background and start only after a
short interval, allowing to adjust the system configuration (e.g.
remove Ethernet cable). The measurements were conducted
in a residential neighborhood. This is particularly important
for the WiFi measurements. There, an empty channel was
selected and measurements run during night, further reducing
the probability of interference.

C. Description of the Test Suite

The tests run on the DUT comprise CPU benchmarks,
and Ethernet and WiFi throughput measurements, both in
up- and down-link direction. Tests of the influence of RAM
utilization on the power consumption showed no effect and
are consequently left out of this analysis.

The CPU benchmarks run a loop adding numbers either on
a single core, or starting the same task on multiple cores in
parallel. The CPU utilization is limited using cpulimit. Tasks
were further pinned to the respective CPU core. Possible

1http://www.mccdaq.com/usb-data-acquisition/USB-1608FS-Plus.aspx, ac-
cessed 2016-04-20



TABLE I
OVERVIEW OF THE DUTS

Raspberry Pi B Cubieboard3 Odroid C1 Raspberry Pi 2 B Odroid-C2 Raspberry Pi 3 B
Release Year 2/2012 10/2012 12/2014 2/2015 02/2016 02/2016
CPU Type ARM1176JZF-S ARM Cortex-A7 ARM Cortex-A5 ARM Cortex-A7 ARM Cortex-A53 ARM Cortex-A53
Instruction Set ARMv6 ARMv7 ARMv7 ARMv7 ARMv8 ARMv8
Number cores 1 2 4 4 4 4
Processor Frequency 700MHz 1 GHz 1.5 GHz 900 MHz 1.5 GHz 1.2 GHz
RAM 512 MB 2 GB 1 GB 1 GB 2 GB 1 GB
Ethernet FE GbE GbE FE GbE FE
WiFi TL-WDN3200 BCM43362 TL-WDN3200 TL-WDN3200 — BCM43438

inaccuracies of the load-limiting script are mitigated by
constantly monitoring the CPU utilization using the proc
file system. Thus, the measured power consumption can be
correlated to the actual CPU utilization in a given interval. The
influence of the CPU utilization is measured in the range from
10 % to 100 % with a step size of 10 %.

The throughput measurements were conducted using iperf
in UDP mode. This assures that no congestion control influ-
ences the accuracy of the network throughput measurements.
Furthermore, as packages do not need to be acknowledged, the
influence of the remote system can be neglected. Additionally,
as the measurement PC is much more capable than the DUT,
data rates received by the SBC are the maximum the network
interface and the overall system can process.

The Ethernet measurements were conducted by directly
connecting the network interfaces of the two devices. The
measurement task is started with a short delay on both sides,
eliminating the influence of control traffic and system utilization
on the measurement accuracy. The power consumption of the
Ethernet interface is evaluated in the range from 10 Mbps to
100 Mbps for the Raspberry Pis, and 1 Gbps for the other
platforms, all with a granularity of 10 Mbps below, and
100 Mpbs above 100 Mbps.

The WiFi measurements are conceptually similar, but one
end must implement the AP functionality. The AP was
configured to run on the measurement PC using hostapd, thus
minimizing negative impacts on the DUT and thus on the
measurement accuracy. Contrary to the Ethernet measurements,
the WiFi measurements are controlled via WiFi and SSH, thus
eliminating the influence of an active Ethernet interface on the
power consumption of the DUT. The power consumption of
the WiFi interface is evaluated in the range from 10 Mbps to
100 Mbps with a granularity of 10 Mbps.

D. Description of the measurement procedure

The measurement procedure follows an incremental approach.
First, the power consumption of the idle system is measured.
Then, the influence of CPU activity is evaluated, allowing to
later eliminate the influence of the CPU consumption from
the component power consumption. Lastly, each component is
stressed individually, while at the same time the system utiliza-
tion (i.e. CPU) is monitored. Based on these measurements, the

power consumption of the individual components is calculated
using a regression based approach.

The idle power consumption is measured by just booting
the DUT and measuring the power consumption. Care is
taken that only the Linux kernel with the minimal number
of required services is running. Also, the network interfaces
are shut down and the Ethernet cable is disconnected, thus
minimizing the power consumption of the idle system. Still,
the system monitoring scripts are active, allowing to later
calibrate the CPU model and component power consumption.
This measurement runs for 900 s.

The CPU power consumption is measured by running a
script stressing the CPU while simultaneously limiting the CPU
utilization using cpulimit. The load generator, load limiter, and
system monitoring are started together using a remote shell.
These are started as delayed, detached processes, allowing
sufficient time to disconnect the remote shell and Ethernet cable.
Thus, negative effects caused by automatic network requests
can be avoided. Simultaneously, the power measurement on the
measurement PC is started. These scripts measure each CPU
utilization level for a duration of 900 s. Thus, the inevitable
inaccuracies of the load limiter can be limited to a minimum.

The Ethernet and WiFi measurements are conducted in a
similar fashion. Instead of stressing the CPU, iperf is started
as either client or server and data is sent to, or received by the
measurement PC. The system monitoring is extended to also
record the network utilization by reading the bytes received and
transmitted on the active interface from the /proc file system.
The CPU utilization is recorded for all measurements, thus
allowing to later eliminate the influence of the CPU utilization
using the previously calibrated model. This step is required to
create a simple, additive power model which is based on the
system utilization only. Hence, no interdependency between
network traffic and CPU utilization needs to be considered
when applying the final models.

All measurement data is first collected in RAM, eliminating
the influence of either network or SD-Card activity on the
power measurements. Therefore, a RAM disk is created, where
the CPU and network utilization logs are stored. Only after
the measurement has finished, the collected data is written to
the SD-Card for later collection and analysis.

The measurement duration of 900 s was chosen, as a com-
promise between accuracy and measurement duration. Iterating



over 10 system states in the case of the CPU measurements, or
40 in the case of Ethernet or WiFi up- and downloads results
in a measurement duration of 2.5 and 10 hours respectively.
By automating these, the measurements of a single device
can be completed within a day by running the idle, CPU,
and Ethernet measurements during the day, while restricting
the WiFi measurements to the night where interference is
expected to be low. Here it must be considered that after each
group of measurements (e.g. idle, CPU, Ethernet, WiFi) manual
interaction is required to adjust the desired system state (e.g.
connect/disconnect Ethernet/WiFi).

E. Discussion of the measurement accuracy

The accuracy of the network measurements, and thus the
elimination of error sources, was of considerable interest
during design and execution of the experiments. As already
discussed, considerable care was taken to assure that the
system state, monitoring, and load-generating scripts are as
accurate as possible. The accuracy of the final power models
mainly depends on the measurement accuracy. Hence, a 16 bit
measurement card was selected to sample the current and
voltage at the power supply. Additionally the sampling rate
was set to the maximum supported sampling rate (10 kHz).
The accuracy is the same as derived in [6]. The maximum
power drawn by the DUTs does not influence the measurement
accuracy, as the same range is used and the measurement error
is bound by the resolution supported by A/D converter and the
minimum currents and voltages measured. Hence, the error of
the measurements is expected to not exceed 2.5 %.

IV. DESCRIPTION OF THE MEASUREMENTS

The following section first describes the measurements
derived of the DUTs. Further, the power consumption of the
USB WiFi dongle is evaluated as described in Section III.

A. Measurement of the SBCs

Figure 2 shows the power consumption of the SBCs as caused
by different CPU utilization on the measured platforms. The
power model of the Raspberry Pi B is taken from [6]. As the
relative CPU utilization is plotted, no further adjustments are
required to allow a comparison with other platforms. For low
utilization, the Cubietruck show the lowest energy consumption,
while for higher utilization the Raspberry Pi consumes the least
energy. This is expected, as it also has the slowest processor
of the DUTs. The highest energy consumption with 2.2 W is
visible for the Odroid C1 under high utilization, while the
original Raspberry Pi is most expensive when idle.

The Ethernet measurements are shown in Figures 3a and 3b.
As the Raspberry line is equipped 100 Mbps capable interfaces
these graphs end earlier. Both Odroids, and the Cubietruck
support Gbps interfaces, but cannot fully saturate these. The
Cubietruck achieves data rates up to 80 Mbps, while the
Odroids achieve rates of 400 Mbps to 1000 Mbps. Most
expensive is the Ethernet interface on the Odroid C2. Still
as this is a more energy efficient device, this effect cancels
out when in use. The negative values of the Pi 3 network
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Fig. 2. Comparison of the influence of the CPU on the power consumption

model are caused by periodic CPU activity while no Ethernet
is connected, but cancel out when the network is active.

B. Measurements of WiFi Dongles

The WiFi throughput measurements for the Raspberry Pi
1 and 2, and the Odroid C1 were conducted using the same
WiFi dongle (TP-Link TL-WDN3200). Hence, the influence
of the power and throughput measurements must be attributed
both to the SOC and the USB chip set. On the Cubietruck and
Pi 3 the onboard WiFi is used.

A comparison of the power consumption of the different
platforms is given in Figures 3c and 3d. The power consumption
of WiFi connections is similar for the Raspberry Pi 1, Pi
2, and Odroid C1, using the TP-Link WiFi dongle. Here it
must be noted that the WiFi measurements on the Raspberry
Pi were conducted without encryption, thus explaining the
high achieved data rates. On the Raspberry Pi 3 and the
Cubietruck the integrated WiFi was used. The performance on
the Cubietruck was good, also showing the smallest additional
energy consumption. On the Raspberry Pi 3, the maximum
measured data rate is 6 Mbps, with a cost similar to the external
WiFi dongle.

V. MODEL GENERATION

The measurements as described in Section III are used to
generate aggregate power models of the DUTs. For this, a
regression based approach is used. All processing and plotting
is conducted in Python using the sklearn library for a robust
regression on the measurement data. The analysis is conducted
analog to [6]. Similar to the measurements of the Raspberry
Pi, each measurement and the corresponding regression was
plotted and the resulting function, including the root mean
square error (RMSE) written to a file.

Figure 4 shows an exemplary measurement used to model the
device’s power consumption. The bandwidth was measured for
data rates from between 10 Mbps and 1 Gbps. The resulting
power consumption over the measured network throughput is
given as a heat map with the density of color increasing for
a larger number of samples at a given point. Still, there are
differences visible between target rates and measured rates. This
is expected as iperf generates packets with a given payload,
while the interface traffic stats return bytes on the wire. For
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(a) Ethernet download
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(b) Ethernet upload
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(c) WiFi download
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Fig. 3. Comparison of the power consumption of data transfers
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Fig. 4. Measurement and model (Odroid C2, Ethernet down, 2nd order fit)

measurements with higher data rates an interesting effect is
observed. A large cluster of values is visible in the range of
830 Mbps. Here, the maximum transfer capacity was reached.

Table II summarizes the generated models and the resulting
RMSE for the measured devices. Similar to [6], the variances
in the collected data are low. Based on the power models
of the Raspberry Pi B, first order models are chosen for the
CPU utilization, while second order models are identified to be
sufficient for modeling the network induced power consumption
of SBCs under load.

To apply the power models as given in Table II, an additive
power model is used. The model

P = Pidle + Pcpu(u) +
∑
if

(Pif,idle + Pif,up(x) + Pif,dn(x))

(1)
consists of the idle power Pidle of the respective device
and its load dependent power consumption Pcpu(u), plus the
consumption caused by any active interfaces. Here, the CPU
utilization is relative to the system load in the range [0, 1].
Pif is the idle power of the respective interface as defined in
Table II. The influence of upload traffic (Pif,up) and download
traffic (Pif,dn) is defined by the polynomials in Table II. The
possible data rates r (in Mbps) are defined by the graphs in
Figure 3.

VI. EVALUATION OF THE POWER MODELS

Considering the measurements as derived in Section IV,
the power consumption of the DUTs is derived. This section

relates these to the performance as derived from the hardware
specifications and measured during the study.

A. Assessment of the Model Accuracy

The accuracy of the generated models is exemplary assessed
in a bursty video streaming scenario as is common for cloud
based video streaming. The models are validated for the use
case of a decentralized cache. Thus, a web server is installed,
serving traffic to a remote device over the Ethernet interface.
This interface is selected, as it is available on all DUTs without
requiring additional hardware. The web server (nginx2) serves
bursty traffic with a simple PHP script. This script creates
traffic according to the request parameters absolute content
size, average bit rate, and burst interval. Thus, the traffic
characteristics of mobile video streaming are simulated.

Reference measurements emulate Full-HD video streaming
with a bitrate of 1 MB/s The request interval was chosen to
be 10 s. In a conventional streaming setup, this would vary
depending on the video bitrate. For simplicity the interval was
chosen to be static, but no difference in the final outcome is
expected. The size of the served content was configured to fill
the measurement interval of 300 s.

The test was repeated for all DUTs. These serve content
from to a client requesting the content. During the test, both
the external power consumption and the system performance
monitoring are active. Based on these, the difference is
estimated and measured power consumption calculated.

Table III summarizes the results of the reference measure-
ments. For all devices, a relative error smaller than 10 % is
achieved. For the Odroids, accuracies below 2 % are observed.
Considering the modeling to be based on a comparatively coarse
granularity of 1 s, the results are quite accurate. Particularly,
the effects of short variations in system load on the power
consumption are difficult to include in any model. Thus, it can
be argued that a good trade-off between accuracy, availability
of system monitoring values, and ease of use was found.

B. Performance Developments of SBCs

The computational efficiency of the tested SBCs is in the
following compared with numbers derived from literature.
Here, Koomey’s law [16] is a prominent example of analyzing
and interpreting the development of computational efficiency.

2https://nginx.org/, accessed 2016-11-18



TABLE II
OVERVIEW OF THE GENERATED POWER MODELS

Function Model RMSE

Rasberry Pi B

Pidle = 1.577

Peth,idle = 0.294

Pwlan,idle = 0.942

Pcpu(u) = 0.181u 0.016

Peth,up(r) = −15.2e−6r2 + 1.005e−3r − 0.002 0.008

Peth,dn(r) = −6.531e−6r2 + 1.6344e−3r + 0.003 0.017

Pwlan,up(r) = 112.8e−6r2 + 24.386e−3r + 0.020 0.071

Pwlan,dn(r) = 71.988e−6r2 + 11.003e−3r + 0.010 0.026

Raspberry Pi 2 B

Pidle = 1.316

Peth,idle = −0.019

Pwlan,idle = 0.899

Pcpu(u) = 0.409u 0.038

Peth,up(r) = 1.95e−06r2 + 1.17e−03r + 0.014 0.014

Peth,dn(r) = −8.54e−06r2 + 2.25e−03r + 0.006 0.012

Pwlan,up(r) = 13.4e−03r2 + 7.50e−03r + 0.008 0.043

Pwlan,dn(r) = −0.37e−03r2 + 37.72e−03r − 0.176 0.081

Raspberry Pi 3 B

Pidle = 1.488

Peth,idle = −0.1176

Pwlan,idle = 0.7645

Pcpu(u) = 0.6191u 0.155

Peth,up(r) = 26.2−06r2 + 0.357e−03r + 0.007 0.039

Peth,dn(r) = −4.33e−06r2 + 0.485−03r − 0.007 0.007

Pwlan,up(r) = −0.25e−06r2 + 1.99e−03r − 0.072 0.013

Pwlan,dn(r) = 1.85e−03r2 +−13.5e−03r + 0.072 0.022

Cubietruck

Pidle = 1.161

Peth,idle = 0.224

Pwlan,idle = 0.306

Pcpu(u) = 1.037u 0.038

Peth,up(r) = −17.6e−06r2 + 6.13e−03r − 0.056 0.057

Peth,dn(r) = −20.9e−06r2 + 2.50e−03r + 0.056 0.024

Pwlan,up(r) = −0.307e−03r2 + 22.8e−03r + 0.011 0.178

Pwlan,dn(r) = 0.137e−03r2 + 6.33e−03r − 0.011 0.064

Odroid C1

Pidle = 1.427

Peth,idle = 0.156

Pwlan,idle = 1.086

Pcpu(u) = 0.721u 0.023

Peth,up(r) = 20.1e−09r2 + 0.47e−03r + 0.008 0.062

Peth,dn(r) = −0.44e−06r2 + 0.97e−03r − 0.008 0.019

Pwlan,up(r) = −0.16e−03r2 + 22.0e−03r − 0.082 0.126

Pwlan,dn(r) = 0.41e−06r2 + 14.0e−03r + 0.082 0.086

Odroid C2

Pidle = 1.258

Peth,idle = 0.878

Pcpu(u) = 1.052u 0.051

Peth,up(r) = −0.24−06r2 + 0.83e−03r − 0.009 0.012

Peth,dn(r) = 58.0e−09r2 + 0.48e−03r + 0.009 0.010

TABLE III
EVALUATION OF THE ACCURACY OF THE POWER MODELS

Device Pe,max Pe RMSE Pe,rel

Pi 1 0.282 -0.137 0.141 6.5%

Pi 2 0.098 0.031 0.036 2.5%

Pi 3 0.718 -0.195 0.275 9.3%

CT 0.346 0.002 0.112 6.0%

C1 0.121 -0.002 0.032 1.0%

C2 0.281 -0.016 0.076 1.7%

Historically, the number of computations achieved per kWh of
consumed energy are compared. In his study Koomey derives
an exponential dependency between year and computational
efficiency, observing an average doubling time of 1.52 years.

Hence, the computational efficiency of the DUTs is analyzed
in a similar way. The power consumption during full CPU
utilization periods (excluding network and other components)
is noted and compared with the CPU frequency multiplied
by the number of cores. The derived values are compared in
Figure 5. Generally, an increasing trend is visible over the last
4 years. Most energy efficient is the Odroid C1, followed by
the Odroid C2 as one of the latest models evaluated. Least
energy efficient clearly is the original Raspberry Pi. Compared
to the Odroids, the Raspberry Pi are less energy efficient, and
considering Table I, less potent.

Similar to [16], Figure 5 shows an exponential dependency
between year and computational efficiency. Compared to [16],
the coefficient of determination is smaller, being caused by
the smaller number of samples available in a still young field
of devices. The exponential fit shows a growth rate of 0.428,
which is quite close to the rate determined by Koomey (0.456),
leading to a doubling time of 1.62 years (compared to 1.52 over
all computers), or 19 months. Still, comparing the achieved
values with the numbers given in [16], an offset between both
functions is visible. Focus of both x86/64 and ARM processors
currently is the improvement of energy efficiency. For x86/x64
processors, the majority of optimizations appears to be on
increasing the computational efficiency during active periods,
e.g. improving pipelining and and reducing energy consumption
while idle. Contrary on ARM processors, energy efficiency
is achieved by implementing deep sleep modes and disabling
cores while idle. This is owed to their current main application
in smartphones, where the processor is only active during
comparatively short usage periods, while x64/64 processors are
usually active for longer times, and consistently low response
times are required. Still, all processors show improved energy
efficiency over time, relating to lower device fabrication nodes.

VII. SUMMARY AND CONCLUSION

The power consumption of SBCs was measured, from
which models mapping the system utilization to power are
derived. Thus, the power consumption of live systems providing
VNFs at end-user premises as proposed in fog computing, can
be calculated based on monitored system utilization. These
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models are also applicable to emerging networking approaches,
extending the information base for future applications.

In the beginning, three questions were posed, which are
answered in the following:

How can the power consumption of SBCs running VNFs and
caches be modeled? The power consumption of SBCs can be
modeled by simultaneously recording the system utilization and
the power consumption of the DUTs, to then run a regression
analysis on the collected data. Here, special consideration must
be paid to the accuracy of the measurement setup, running
processes, and general system configuration, thus minimizing
the influence of errors, and consequently maximizing the
accuracy of the generated model.

How has the energy efficiency of SBCs changed since the
release of the Raspberry Pi? The absolute idle and network
related power consumption of SBCs has remained comparable
over the last years. Still, the computational efficiency has
doubled every 1.62 years and network throughput has increased
considerably over the course of four years. The increase in
computational efficiency correlates well with Koomey’s law,
describing a doubling time of 1.52 years. Based on these
observations, and the ongoing trend of increasing capabilities
of modern smartphones, further improvements in computational
efficiency are expected.

How accurate can the energy cost of a deployed network
service be derived using readily available system metrics? The
power consumption of the modeled SBCs can be derived by
monitoring the system utilization using simple calls to the unix
/proc file system and converting these to power consumption
using the presented models. Reference measurements show
errors in the range of 1 % to 10 %. The energy efficiency is
mainly influenced by CPU capabilities. Depending on the used
instructions, the gain of using a more recent CPU is expected
to be even larger than shown in Section VI.

Concluding, the evolution of the power consumption of the
Raspberry Pi, Pi 2, and Pi 3 was compared to alternative
platforms. The measurements show considerable increases in
energy efficiency over the last years, approximately doubling
every 1.62 years. Thus, by adding computational resources
at end-user premises, the promise of fog computing can be
put into practice, and performance gains and respective costs

accurately determined using the presented power models.
Future work will focus on mapping the requirements of

various types of network services to system utilization values,
thus providing means to determine their energy consumption
based on end-user or network requirements only.
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